Small Business Innovation Research/Small Business Tech Transfer

Variable Emissivity Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings, Phase I

Completed Technology Project (2008 - 2008)

Project Introduction

In recent work, this firm developed a highly promising, patented variable emittance technology based on electrochromic Conducting Polymers, with: (1) Thin (< 0.2 mm), flexible, lightweight (0.176 kg/m2), variable area (0.5 cm2 -0.5 m2. (2) Impervious to flexing, micrometeoroids.(3) High Delta Emittance (0.5, range 0.13 - 0.89).(4) > 105 cycles, < 5 s switching, indefinite opticalmemory. (5) Low power, 0.30 W/m2 (6) Space durability: (10-6 Torr) 100,000 electrochromic cycles, 90 thermal cycles;. no UV degradation > 500 h. Durability against atomic-O. (7) Operating temperature (-) 45 oC to (+) 100 oC, durability (-) 196 oC to (+) 100 oC. (8) Easily applicable with spacequalified adhesive to any surface. (9) Cost ca. < \$5K/m2. A key technical barrier of the earlier generation of this technology was the need for a hermetic seal for space durability. This was resolved through use of unique ionic electrolytes. An additional drawback remained: High solar absorptance of the dark-state. In very recent, unrelated work, this firm has developed coatings that are IR transparent from 2 to 25 microns while having very low solar absorptance (data herein). In the proposed work, these will be used to arrive at unique, variable emissivity materials with very low solar absorptance. Proposed work includes extensive space durability testing.

Primary U.S. Work Locations and Key Partners

Variable Emissivity Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Variable Emissivity Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings, Phase I

Completed Technology Project (2008 - 2008)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland
Ashwin-Ushas Corp, Inc.	Supporting Organization	Industry Small Disadvantaged Business (SDB)	Holmdel, New Jersey

Primary U.S. Work Locations	
Maryland	New Jersey

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Prasanna Chandrasekhar

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage

